Virtualisation, Storage and various other ramblings.

Category: Virtualisation (Page 1 of 8)

Replicating my vSphere network configuration in Openshift Virtualisation

Red Hat Openshift Virtualisation provides a platform for running and managing Virtual Machines alongside Containers using a consistent API. It also provides a mechanism for migrating VMs from platforms such as vSphere.

As I have both environments, I wanted to deploy an Openshift Virtualisation setup that mimics my current vSphere setup so I could migrate Virtual Machines to it.

Existing vSphere Design

Below is a diagram depicting my current vSphere setup. My ESXi hosts are dual-homed with a separation of management (vmkernel) and virtual machine traffic.

vmnic1 is connected to a trunk port accommodating several different VLANs. These are configured as corresponding port groups in the Distributed Switch.

Integrating an Openshift Virtualisation host

Given an Openshift host with the same number of NICs, we can design a similar solution including a test use case:

By default, an existing bridge (ovs-system) is created by Openshift to facilitate cluster networking. To achieve the same level of isolation configured in the vSphere environment, an additional bridge is required. This will be called vlan-trunk and as the name implies, it will act as a trunk interface for a range of VLAN networks.

Once configured, a Virtual Machine Instance can be created, connected to one of these VLAN networks and reside on the same L2 network as their vSphere-managed VM counterparts.

Configuring the Openshift Node

There are several ways to accomplish this, however for ease, the NMState Operator can be used to configure host networking in a declarative way:

Once installed, a default NMState object needs to be created:

apiVersion: nmstate.io/v1
kind: NMState
metadata:
  name: nmstate
spec: {}

After which we can define an instance of the NodeNetworkConfigurationPolicy object that creates our additional bridge interface and includes a specific NIC.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: vlan-trunk-ens34-policy
spec:
  desiredState:
    interfaces:
      - name: vlan-trunk
        description: Linux bridge with ens34 as a port
        type: linux-bridge
        state: up
        ipv4:
          enabled: false
        bridge:
          options:
            stp:
              enabled: false
          port:
            - name: ens34

To validate, run ip addr show on the host:

2: ens33: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state UP group default qlen 1000
    link/ether 00:50:56:bb:e3:c3 brd ff:ff:ff:ff:ff:ff
    altname enp2s1
3: ens34: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master vlan-trunk state UP group default qlen 1000
    link/ether 00:50:56:bb:97:0d brd ff:ff:ff:ff:ff:ff
    altname enp2s2

...

653: vlan-trunk: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 00:50:56:bb:97:0d brd ff:ff:ff:ff:ff:ff

In a similar way that Distributed Port groups are created in vSphere, we can create NetworkAttachmentDefinition objects that represent our physical network(s) in software.

The example below is comparable to a Distributed Port Group in vSphere that’s configured to tag traffic with the VLAN ID of 40. If required, we could repeat this process for each VLAN/Distributed Port group so we have a 1:1 mapping between both the vSphere and Openshift Virtualisation environments.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  annotations:
    k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/vlan-trunk
  name: vm-vlan-40
  namespace: openshift-nmstate
spec:
  config: '{"name":"vm-vlan-40","type":"cnv-bridge","cniVersion":"0.3.1","bridge":"vlan-trunk","vlan":40,"macspoofchk":true,"ipam":{},"preserveDefaultVlan":false}'

Which can be referenced when creating a VM:

After a short period, the VM’s IP address will be reported to the console. In my example, I have a DHCP server running on that VLAN, which is how this VM acquired its IP address:

Which we can test connectivity from another machine with ping. such as a VM running on an ESXi Host:

sh-5.1# ping 172.16.40.4
PING 172.16.40.4 (172.16.40.4) 56(84) bytes of data.
64 bytes from 172.16.40.4: icmp_seq=1 ttl=63 time=1.42 ms
64 bytes from 172.16.40.4: icmp_seq=2 ttl=63 time=0.960 ms
64 bytes from 172.16.40.4: icmp_seq=3 ttl=63 time=0.842 ms
64 bytes from 172.16.40.4: icmp_seq=4 ttl=63 time=0.967 ms
64 bytes from 172.16.40.4: icmp_seq=5 ttl=63 time=0.977 ms

By taking this approach, we can gradually start migrating VM’s from vSphere to Openshift Virtualisation with minimal disruption, which I will cover in a subsequent post.

Evaluating Harvester in vSphere

Disclaimer – The use of nested virtualisation is not a supported topology

Harvester is an open-source HCI solution aimed at managing Virtual Machines, similar to vSphere and Nutanix, with key differences including (but not limited to):

  • Fully Open Source
  • Leveraging Kubernetes-native technologies
  • Integration with Rancher

Testing/evaluating any hyperconverged solution can be difficult – It usually requires having dedicated hardware as these solutions are designed to work directly on bare metal. However, we can circumvent this by leveraging nested virtualisation – something which may be familiar with a lot of homelabbers (myself included) – which involves using an existing virtualisation solution provision workloads that also leverage virtualisation technology.

Step 1 – Planning

To mimic what a production-like system may look like, two NICs will be leveraged – one that facilitates management traffic, and the other for Virtual Machine traffic, as depicted below

MGMT network and VM Network will manifest as VDS Port groups.

Also, download and make available the latest ISO for harvester

Step 2 – Create vDS Port Groups

It is highly recommended to create new Distributed Port groups for this exercise, mainly because of the configuration we will be applying in the next step.

Create a new vDS Port Group:

Give the port group a name, such as harvester-mgmt

Adjust any configuration (ie VLAN ID) to match your environment (if required). Or accept the defaults:

Repeat this process to create the harvester-vm Port group. We should now have two port groups:

  • harvester-mgmt
  • harvester-vm

Step 3 – Enable MAC learning on Port groups [Critical]

William Lam has an excellent post on how to accomplish this. This is required for Harvester (or any hypervisor) to function correctly when operating in a nested environment.

Set-MacLearn -DVPortgroupName @("harvester-mgmt") -EnableMacLearn $true -EnablePromiscuous $false -EnableForgedTransmit $true -EnableMacChange $false

Set-MacLearn -DVPortgroupName @("harvester-vm") -EnableMacLearn $true -EnablePromiscuous $false -EnableForgedTransmit $true -EnableMacChange $false

Step 4 – Creating a Harvester VM

Our Harvester VM will operate like any other VM, with some important differences. In vSphere, go through the standard VM creation wizard to specify the Host/Datastore options. When presented with the OS type, select Other Linux (64 bit).

When customising the hardware, select Expose hardware assisted virtualization to the guest OS – This is crucial, as without this selected Harvester will not install.

Add an additional network card so that our VM leverages both previously created port groups:

And finally, mount the Harvester ISO image.

Step 4 – Install Harvester

Power on the VM and providing the ISO is mounted and connected, you should be presented with the install screen. As this is the first node, select create a new Harvester Cluster

Select the Install target and optional MBR partitioning

Configure the hostname, management nic and IP assignment options.

Configure the DNS config:

Configure the Harvester VIP. This is what we will use to access the Web UI. This can also be obtained via DHCP if desired.

Configure the cluster token, this is required if you want to add more nodes later on.

Configure the local Password:

Configure the NTP server Address:

If desired, the subsequent options facilitate importing SSH keys, reading a remote config, etc which are optional. A summary will be presented before the install begins:

Proceed with the install.

Note : After a reboot, it may take a few minutes before harvester reports as being in a ready state – Once it does, navigate to the reported management URL.

At which point you will be prompted to reset the admin password

Step 5 – Configure VM Network

Once logged in to Harvester navigate to Hosts > Edit Config

Configure the secondary NIC to the VLAN network (our VM network)

Navigate to Settings > VLAN > Edit

Click “Enable” and select the default interface to the secondary interface. This will be the default for any new nodes that join the cluster.

To create a network for our VM’s to reside in, select Network > Create:

Give this network a name and a VLAN ID. Note – you can supply VLAN ID 1 if you’re using the native/default VLAN.

Step 6 – Test VM Network

Firstly, create a new image:

For this example, we can use an ISO image. After supplying the URL Harvester will download and store the image:

After downloading, we can create a VM from it:

Specify the VM specs (CPU and Mem)

Under Volumes, add an additional volume to act as the installation target for the OS (Or leave if purely wanting to use a live ISO):

Under Networks, change the selection to the VM network that was previously created and click “Create”:

Once the VM is in running state, we can take a VNC console to it:

At which point we can interact with it as we would expect with any HCI solution:

Taking a Modular Approach to my Homelab with Pulumi

Architecture

After reviewing the key components of my lab environment, I translated these into the Pulumi stacks as illustrated in the diagram below. Pulumi has a blog post about the benefits of adopting multiple stacks and I found organising my homelab this way enables greater flexibility and organisation. I can also use stacks as a “template” to further build out my lab environment, for example, repeating the “Tools-Cluster” stack to add additional clusters.

The main objectives are:

  • Create a 3 node, K3s cluster utilising vSphere VM’s
  • Install Metallb, Rancher and Cert-Manager into this cluster
  • Using Rancher, create an RKE2 cluster to accommodate shared tooling services, ie:
    • Rancher Monitoring Stack (Prometheus, Grafana, Alertmanager, etc)
    • Hashicorp Vault
    • etc

Building

Each stack contains the main Pulumi code, a YAML file to hold various variables to influence parameters such as VM names, Networking config, etc.

├── rancher-application
│   ├── Assets
│   │   └── metallb
│   │       └── metallb-values.yaml
│   ├── go.mod
│   ├── go.sum
│   ├── main.go
│   ├── Pulumi.dev.yaml
│   └── Pulumi.yaml
├── rancher-management-cluster
│   ├── Assets
│   │   ├── metadata.yaml
│   │   └── userdata.yaml
│   ├── go.mod
│   ├── go.sum
│   ├── main.go
│   ├── Pulumi.dev.yaml
│   └── Pulumi.yaml
└── rancher-tools-cluster
    ├── Assets
    │   └── userdata.yaml
    ├── go.mod
    ├── go.sum
    ├── main.go
    ├── Pulumi.dev.yaml
    └── Pulumi.yaml

Each stack has a corresponding assets directory which contains supporting content for a number of components:

  • Rancher Application – Values.yaml to influence the metallb L2 VIP addresses
  • Rancher Management Cluster – Userdata and Metadata to send to the created VM’s, including bootstrapping K3s
  • Rancher Tools Cluster – Userdata to configure the local registry mirror

Rancher Management Cluster Stack

This is the first stack that needs to be created and is relatively simple in terms of its purpose. The metadata.yaml contains a template for defining cloud-init metadata for the nodes:

network:
  version: 2
  ethernets:
    ens192:
      dhcp4: false
      addresses:
        - $node_ip
      gateway4: $node_gateway
      nameservers:
        addresses:
          - $node_dns
local-hostname: $node_hostname
instance-id: $node_instance

userdata.yaml contains k3s-specific configuration pertaining to my local registry mirror as well a placeholder for the K3S bootstrapping process, $runcmd.

#cloud-config
write_files:
  - path: /etc/rancher/k3s/registries.yaml
    content: |
      mirrors:
        docker.io:
          endpoint:
            - "http://172.16.10.208:5050"
runcmd:
  - $runcmd

Creating the VM’s leverages the existing vSphere Pulumi provider, seeding the nodes with cloud-init user/metadata which also instantiates K3s.

userDataEncoded := base64.StdEncoding.EncodeToString([]byte(strings.Replace(string(userData), "$runcmd", k3sRunCmdBootstrapNode, -1)))

				vm, err := vsphere.NewVirtualMachine(ctx, vmPrefixName+strconv.Itoa(i+1), &vsphere.VirtualMachineArgs{
					Memory:         pulumi.Int(6144),
					NumCpus:        pulumi.Int(4),
					DatastoreId:    pulumi.String(datastore.Id),
					Name:           pulumi.String(vmPrefixName + strconv.Itoa(i+1)),
					ResourcePoolId: pulumi.String(resourcePool.Id),
					GuestId:        pulumi.String(template.GuestId),
					Clone: vsphere.VirtualMachineCloneArgs{
						TemplateUuid: pulumi.String(template.Id),
					},
					Disks: vsphere.VirtualMachineDiskArray{vsphere.VirtualMachineDiskArgs{
						Label: pulumi.String("Disk0"),
						Size:  pulumi.Int(50),
					}},
					NetworkInterfaces: vsphere.VirtualMachineNetworkInterfaceArray{vsphere.VirtualMachineNetworkInterfaceArgs{
						NetworkId: pulumi.String(network.Id),
					},
					},
					ExtraConfig: pulumi.StringMap{
						"guestinfo.metadata.encoding": pulumi.String("base64"),
						"guestinfo.metadata":          pulumi.String(metaDataEncoded),
						"guestinfo.userdata.encoding": pulumi.String("base64"),
						"guestinfo.userdata":          pulumi.String(userDataEncoded),
					},
				},
				)
				if err != nil {
					return err
				}

The first node initiates the K3s cluster creation process. Subsequent nodes have their $rucmd manipulated by identifying the first node’s IP address and using that to join the cluster:

userDataEncoded := vms[0].DefaultIpAddress.ApplyT(func(ipaddress string) string {

					runcmd := fmt.Sprintf(k3sRunCmdSubsequentNodes, ipaddress)
					return base64.StdEncoding.EncodeToString([]byte(strings.Replace(string(userData), "$runcmd", runcmd, -1)))
				}).(pulumi.StringOutput)

				vm, err := vsphere.NewVirtualMachine(ctx, vmPrefixName+strconv.Itoa(i+1), &vsphere.VirtualMachineArgs{
					Memory:         pulumi.Int(6144),

Rancher Application Stack

This stack makes extensive use of the (currently experimental) Helm Release Resource as well as the cert-manager package from the Pulumi Registry

For example, creating the Metallb config map based on the aforementioned asset file:

		metallbConfigmap, err := corev1.NewConfigMap(ctx, "metallb-config", &corev1.ConfigMapArgs{
			Metadata: &metav1.ObjectMetaArgs{
				Namespace: metallbNamespace.Metadata.Name(),
			},
			Data: pulumi.StringMap{
				"config": pulumi.String(metallbConfig),
			},
		})

And the Helm release:

		_, err = helm.NewRelease(ctx, "metallb", &helm.ReleaseArgs{
			Chart:     pulumi.String("metallb"),
			Name:      pulumi.String("metallb"),
			Namespace: metallbNamespace.Metadata.Name(),
			RepositoryOpts: helm.RepositoryOptsArgs{
				Repo: pulumi.String("https://charts.bitnami.com/bitnami"),
			},
			Values: pulumi.Map{"existingConfigMap": metallbConfigmap.Metadata.Name()},
		})

And for Rancher:

		_, err = helm.NewRelease(ctx, "rancher", &helm.ReleaseArgs{
			Chart:     pulumi.String("rancher"),
			Name:      pulumi.String("rancher"),
			Namespace: rancherNamespace.Metadata.Name(),
			RepositoryOpts: helm.RepositoryOptsArgs{
				Repo: pulumi.String("https://releases.rancher.com/server-charts/latest"),
			},
			Values: pulumi.Map{
				"hostname":           pulumi.String(rancherUrl),
				"ingress.tls.source": pulumi.String("secret"),
			},
			Version: pulumi.String(rancherVersion),
		}, pulumi.DependsOn([]pulumi.Resource{certmanagerChart, rancherCertificate}))

As I used an existing secret for my TLS certificate I had to create a cert-manager cert object, for which there are a number of options that I experimented with:

1. Read a file

Similarly to the metallb config, A file could be read that contained the YAML to create the Custom Resource type, although this was a feasible approach, I wanted something that was less error-prone.

2. Use the API extension type

The Pulumi Kubernetes provider enables the provisioning of the type NewCustomResource. For my requirements, this is an improvement over simply reading a YAML file, however, anything beyond the resources metadata isn’t strongly typed

rancherCertificate, err := apiextensions.NewCustomResource(ctx, "rancher-cert", &apiextensions.CustomResourceArgs{
			ApiVersion: pulumi.String("cert-manager.io/v1"),
			Kind:       pulumi.String("Certificate"),
			Metadata: &metav1.ObjectMetaArgs{
				Name:      pulumi.String("tls-rancher-ingress"),
				Namespace: pulumi.String(rancherNamespaceName),
			},
			OtherFields: kubernetes.UntypedArgs{
				"spec": map[string]interface{}{
					"secretName": "tls-rancher-ingress",
					"commonName": "rancher.virtualthoughts.co.uk",
					"dnsNames":   []string{"rancher.virtualthoughts.co.uk"},
					"issuerRef": map[string]string{
						"name": "letsencrypt-staging",
						"kind": "ClusterIssuer",
					},
				},
			},
		}, pulumi.DependsOn([]pulumi.Resource{certmanagerChart, certmanagerIssuers}))

3. Use crd2pulumi

crd2pulumi is used to generate typed CustomResources based on Kubernetes CustomResourceDefinitions, I took the cert-manager CRD’s and ran it through this tool, uploaded to a repo and repeated the above process:

import (
	certmanagerresource "github.com/david-vtuk/cert-manager-crd-types/types/certmanager/certmanager/v1"
        ...
        ...
)
	rancherCertificate, err := certmanagerresource.NewCertificate(ctx, "tls-rancher-ingress", &certmanagerresource.CertificateArgs{
			ApiVersion: pulumi.String("cert-manager.io/v1"),
			Kind:       pulumi.String("Certificate"),
			Metadata: &metav1.ObjectMetaArgs{
				Name:      pulumi.String("tls-rancher-ingress"),
				Namespace: pulumi.String(rancherNamespaceName),
			},
			Spec: &certmanagerresource.CertificateSpecArgs{
				CommonName: pulumi.String(rancherUrl),
				DnsNames:   pulumi.StringArray{pulumi.String(rancherUrl)},
				IssuerRef: certmanagerresource.CertificateSpecIssuerRefArgs{
					Kind: leProductionIssuer.Kind,
					Name: leProductionIssuer.Metadata.Name().Elem(),
				},
				SecretName: pulumi.String("tls-rancher-ingress"),
			},
		})

Much better!

Tools Cluster Stack

Comparatively, this is the simplest of all the Stacks. Using the Rancher2 Pulumi Package makes it pretty trivial to build out new clusters and install apps:

_, err = rancher2.NewClusterV2(ctx, "tools-cluster", &rancher2.ClusterV2Args{
			CloudCredentialSecretName: cloudcredential.ID(),
			KubernetesVersion:         pulumi.String("v1.21.6+rke2r1"),
			Name:                      pulumi.String("tools-cluster"),
			//DefaultClusterRoleForProjectMembers: pulumi.String("user"),
			RkeConfig: &rancher2.ClusterV2RkeConfigArgs{

.........
}

				monitoring, err := rancher2.NewAppV2(ctx, "monitoring", &rancher2.AppV2Args{
					ChartName: pulumi.String("rancher-monitoring"),
					ClusterId: cluster.ClusterV1Id,
					Namespace: pulumi.String("cattle-monitoring-system"),
					RepoName:  pulumi.String("rancher-charts"),
				}, pulumi.DependsOn([]pulumi.Resource{clusterSync}))

« Older posts

© 2024 Virtual Thoughts

Theme by Anders NorenUp ↑

Social media & sharing icons powered by UltimatelySocial
RSS
Twitter
Visit Us
Follow Me