Virtualisation, Storage and various other ramblings.

Category: Cloud (Page 5 of 9)

Pi-Hole and K8s v2 – Now with DNS over HTTPS

In a previous post, I went through the process of configuring Pi-Hole within a Kubernetes cluster for the purpose of facilitating a network-wide adblocking. Although helpful, I wanted to augment this with DNS over HTTPS.

Complete manifests can be found here. Shout out to visibilityspots for the cloudflared image on Dockerhub

Why?

DNS, as a protocol, is insecure and can be prone to manipulation and man-in-the-middle attacks. DNS over HTTPS helps address this by encrypting the data between the DNS over HTTPS client and the DNS over HTTPS-based DNS resolver. One of which is provided by Cloudflare.

Thankfully, Pi-Hole has some documentation on how to implement this for the traditional Pi-Hole setups. But for Kubernetes-based deployments, this requires a different approach.

How?

The DNS over HTTPS client is facilitated by a Cloudflare daemon. In a traditional Pi-Hole setup this is simply run alongside Pi-Hole itself, but in a containerised environment there are predominantly two ways to address this:

As a separate microservice

This approach leverages two different deployments, one for the Pi-Hole service, and one for cloudflared. While workable, I felt that this was a less optimal approach

Service-To-Service communication between Pi-Hole and Cloudflared

As another container within the Pi-Hole pod

Given the tight relationship between these containers, and the fact their respective services run on different ports, this seems like a more efficient approach.

Intra-pod communication between Pi-Hole and CloudflareD

As the containers share the same network interface, one pod can access the other over either the veth interface, or simply the localhost address. For Pi-Hole, we can facilitate this via a configmap change:

apiVersion: v1
kind: ConfigMap
metadata:
  name: pihole-env
  namespace: pihole-system
data:
  TZ: UTC
  DNS1: 127.0.0.1#5054
  DNS2: 127.0.0.1#5054

Testing

Once the respective manifest files have been deployed and clients are pointing to pi-hole as a DNS resolver, it can be tested by accessing https://1.1.1.1/help. As per the example below, DNS over HTTPS has been identified.

Creating a highly available, cross AZ, loadbalanced ETCD cluster in AWS with Terraform

Having experimented with Terraform recently, I decided to leverage this tool by creating an etcd cluster in AWS. This blog post goes through the steps used to accomplish this. For readability, I’ve only quoted pertinent code snippets, but all of the code can be found at https://github.com/David-VTUK/terraformec2.

Disclaimer

I do not profess to be an Etcd, Terraform or AWS expert, therefore he be dragons in the form of implementations unlikely to be best practice or production-ready. In particular, I would like to revisit this at some point and enhance it to include:

  • Securing all Etcd communication with generated certs.
  • Implement a mechanism for rotating members in/out of the cluster.
  • Leverage auto-scaling groups for both bastion and Etcd members.
  • Locking down the security groups.
  • ….and a  lot more.

 

Architecture

The basic principles of this implementation are as follows:

  • Etcd members will reside in private subnets and accessed via an internal load-balancer.
  • Etcd members will be joined to a cluster by leveraging the Etcd discovery URL.
  • A bastion host will be used to proxy all access to the private subnets.
  • The Terraform script creates all the components, at the VPC level and beyond.

The scripts are separated into the following files:

.
├── deployetcd.tpl
├── etcdBootstrapScript.tf
├── etcdEC2Instances.tf
├── etcdMain.tf
├── etcdNetworking.tf
├── etcdSecurityGroups.tf
├── etcdVPC.tf
├── terraformec2.pem
├── terraform.tfstate
└── terraform.tfstate.backup

deployEtcd.tpl

This is a template file for Terraform, it’s used to generate a bootstrap script to run on each of our Etcd nodes.

To begin with, download Etcd, extract and do some general housekeeping with regards to access and users. It will also output two environment variables – ETCD_HOST_IP and ETCD_NAME, which is needed for the Systemd unit file.

cd /usr/local/src
sudo wget "https://github.com/coreos/etcd/releases/download/v3.3.9/etcd-v3.3.9-linux-amd64.tar.gz"
sudo tar -xvf etcd-v3.3.9-linux-amd64.tar.gz
sudo mv etcd-v3.3.9-linux-amd64/etcd* /usr/local/bin/
sudo mkdir -p /etc/etcd /var/lib/etcd
sudo groupadd -f -g 1501 etcd
sudo useradd -c "etcd user" -d /var/lib/etcd -s /bin/false -g etcd -u 1501 etcd
sudo chown -R etcd:etcd /var/lib/etcd

export ETCD_HOST_IP=$(ip addr show eth0 | grep "inet\b" | awk '{print $2}' | cut -d/ -f1)
export ETCD_NAME=$(hostname -s)

Create the Systemd unit file

sudo -E bash -c 'cat << EOF > /lib/systemd/system/etcd.service
[Unit]
Description=etcd service
Documentation=https://github.com/coreos/etcd

[Service]
User=etcd
Type=notify
ExecStart=/usr/local/bin/etcd \\
 --data-dir /var/lib/etcd \\
 --discovery ${discoveryURL} \\
 --initial-advertise-peer-urls http://$ETCD_HOST_IP:2380 \\
 --name $ETCD_NAME \\
 --listen-peer-urls http://$ETCD_HOST_IP:2380 \\
 --listen-client-urls http://$ETCD_HOST_IP:2379,http://127.0.0.1:2379 \\
 --advertise-client-urls http://$ETCD_HOST_IP:2379 \\

[Install]
WantedBy=multi-user.target
EOF'

${discoveryURL} is a placeholder variable. The Terraform script will replace this and generate the script file with a value for this variable.

etcdBootstrapScript.tf

This is where the discovery token is generated, parsed into the template file to which a new file will be generated – our complete bootstrap script. Simply performing an HTTP get request to the discovery URL will return a unique identifier URL in the response body. So we grab this response and store it as a data object. Note “size=3” denotes the explicit size of the Etcd cluster.

data "http" "etcd-join" {
  url = "https://discovery.etcd.io/new?size=3"
}

Take this data and parse it into the template file, filling it the variable ${discoveryURL} with the unique URL generated.

data "template_file" "service_template" {
  template = "${file("./deployetcd.tpl")}"

  vars = {
    discoveryURL = "${data.http.etcd-join.body}"
  }
}

Take the generated output, and store it as “script.sh” in the local directory

resource "local_file" "template" {
  content  = "${data.template_file.service_template.rendered}"
  filename = "script.sh"
}

The purpose of this code block is to generate one script to be executed on all three Etcd members, each joining a specific 3 node etcd cluster.

etcdEC2Instances.tf

This script performs the following:

  • Create a bastion host in the public subnet with a public IP.
  • Create three etcd instanced in each AZ, and execute the generated script via the bastion host:
    connection {
    host = "${aws_instance.etc1.private_ip}"
    port = "22"
    type = "ssh"
    user = "ubuntu"
    private_key = "${file("./terraformec2.pem")}"
    timeout = "2m"
    agent = false

    bastion_host = "${aws_instance.bastion.public_ip}"
    bastion_port = "22"
    bastion_user = "ec2-user"
    bastion_private_key = "${file("./terraformec2.pem")}"
}

  provisioner "file" {
    source      = "script.sh"
    destination = "/tmp/script.sh"
  }

  provisioner "remote-exec" {
    inline = [
      "chmod +x /tmp/script.sh",
      "/tmp/script.sh",
    ]
  }

etcdMain.tf

  • Contains access and secret keys for AWS access

etcdNetworking.tf

Configures the following:

  • Elastic IP for NAT gateway.
  • NAT gateway so private subnets can route out to pull etcd.
  • Three subnets in the EU-West-2 region
    • EU-West-2a
    • EU-West-2b
    • EU-West-2c
  • An ALB that spans across the aforementioned AZ’s:
    • Create a target group.
    • Create a listener on Etcd port.
    • Attach EC2 instances.
    • A health check that probes :2779/version on the Etcd EC2 instances.
  • An Internet Gateway and attach to VPC

etcdSecurityGroups.tf

  • Creates a default security group, allowing all (don’t do this in production)

etcdVPC.tf

  • Creates the VPC with a subnet of 10.0.0.0/16

terraformec2.pem

  • Key used to SSH into the bastion host and Etcd EC2 instances.

Validating

Log on to each ec2 instance and check the service via “journalctl -u etcd.service”. In particular, we’re interested in the peering and if any errors occur.

ubuntu@ip-10-0-1-100:~$ journalctl -u etcd.service
Sep 08 15:34:22 ip-10-0-1-100 etcd[1575]: found peer b8321dfeb5729811 in the cluster
Sep 08 15:34:22 ip-10-0-1-100 etcd[1575]: found peer 7e245ce888bd3e1f in the cluster
Sep 08 15:34:22 ip-10-0-1-100 etcd[1575]: found self b4ccf12cb29f9dda in the cluster
Sep 08 15:34:22 ip-10-0-1-100 etcd[1575]: discovery URL= https://discovery.etcd.io/32656e986a6a53a90b4bdda27559bf6e
 cluster 29d1ca9a6b0f3f87
Sep 08 15:34:23 ip-10-0-1-100 systemd[1]: Started etcd service.
Sep 08 15:34:23 ip-10-0-1-100 etcd[1575]: ready to serve client requests
Sep 08 15:34:23 ip-10-0-1-100 etcd[1575]: set the initial cluster version to 3.3
Sep 08 15:34:23 ip-10-0-1-100 etcd[1575]: enabled capabilities for version 3.3

We can also check they’re registered and healthy with the ALB:

Next, run a couple of commands against the ALB address:

[ec2-user@ip-10-0-4-242 ~]$ etcdctl --endpoints http://internal-terraform-example-alb-824389756.eu-west-2.alb.amazonaws.com:2379 member list
7e245ce888bd3e1f: name=ip-10-0-3-100 peerURLs=http://10.0.3.100:2380 clientURLs=http://10.0.3.100:2379 isLeader=false
b4ccf12cb29f9dda: name=ip-10-0-1-100 peerURLs=http://10.0.1.100:2380 clientURLs=http://10.0.1.100:2379 isLeader=false
b8321dfeb5729811: name=ip-10-0-2-100 peerURLs=http://10.0.2.100:2380 clientURLs=http://10.0.2.100:2379 isLeader=true
[ec2-user@ip-10-0-4-242 ~]$ etcdctl --endpoints http://internal-terraform-example-alb-824389756.eu-west-2.alb.amazonaws.com:2379 cluster-health
member 7e245ce888bd3e1f is healthy: got healthy result from http://10.0.3.100:2379
member b4ccf12cb29f9dda is healthy: got healthy result from http://10.0.1.100:2379
member b8321dfeb5729811 is healthy: got healthy result from http://10.0.2.100:2379
cluster is healthy

Splendid. Now this cluster is ready to start serving clients.

Application security with mutual TLS (mTLS) via Istio

TLS Overview

If we take an example of accessing a website such as https://www.virtualthoughts.co.uk/, these are the high-level steps of what occurs:

 

 

 

  1. The client initiates a connection to the web server requesting an HTTPS connection.
  2. The web server responds with its public key. The client validates the key with its list of known Certificate Authorities.
  3. A session key is generated by the client and encrypted with the web server’s public key and is sent back to the web server.
  4. The web server decrypts the session key with its private key. End to end encryption is established.

By default, the TLS protocol only proves the identity of the server to the client using X.509 certificate and the authentication of the client to the server is left to the application layer.  For external, public-facing websites, this is an acceptable and well-established implementation of TLS. But what about communication between different microservices?

 

As opposed to monolithic applications, microservices are usually inter-connected which allow them to be scaled/modified/etc independently. But this does raise some challenges. For example:

  • How do we ensure service-to-service communication is always encrypted?
  • How can do we do this without changing the application source code?
  • How can we automatically secure communication when we introduce a new service to an application?
  • How can we authenticate clients and servers and fully establish a “zero trust” network policy?

Istio can help us address these challenges:

Example Application

To demonstrate Istio’s mTLS capabilities a WordPress Helm chart was deployed into a namespace with automatic sidecar injection. Installing and configuring Istio can be found on a previous blog post. By default, the policy specifies no mTLS between the respective services. As such, the topology of the solution is depicted below:

 

 

We can validate this by using Istioctl:

 

All of the “testsite” services (WordPress frontend and backend) Envoy proxies are using HTTP as their transport mechanism. Therefore mTLS has not been configured yet.

Creating Istio Objects – Policy and Destination Rules

As you might expect, establishing mutual TLS (mTLS) is a two-part process, First, we must configure the clients to leverage mTLS, as well as the servers. This is accomplished with Policy and Destination rules.

Policy (AKA – what I, the server, will accept)

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
name: "default"
namespace: "wordpress-app"
spec:
peers:
- mtls: {}

This example policy strictly enforces only mTLS connections between services within the “wordpress-app” namespace

DestinationRule (AKA – what I, the client, will send out)

 apiVersion: "authentication.istio.io/v1alpha1"
apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
name: "vt-wordpress-mariadb"
namespace: "wordpress-app"
spec:
host: "*.wordpress-app.svc.cluster.local"
trafficPolicy:
tls:
mode: ISTIO_MUTUAL

This example enforces the use of mutual TLS when communicating with any service in the wordpress-app namespace. Applying these and re-running the previous istioctl command yields the following result:

This is accomplished largely due to Citadel – a component in the Istio control plane that manages certificate creation and distribution:

When mTLS is configured the traffic flow (from a high level) can be described as follows:

  • Citadel provides certificates to the sidecar pods and manages them.
  • WordPress pod creates a packet to query the MYSQL database.
    • WordPress Envoy sidecar pod intercepts this and establishes a connection to the destination sidecar pod and presents its certificate for authenticity.
  • MYSQL Envoy sidecar pod receives a connection request, validates the client’s certificate and sends its own back.
  • WordPress Envoy sidecar pod receives MYSQL’s certificate and checks it for authenticity.
  • Both proxies are in agreement as to each other’s identity and establish an encrypted tunnel between the two.

This is what makes it “mutual” TLS. In effect, both services are presenting, inspecting and validating each other’s certificate as a prerequisite for service-to-service communication. This differs from a standard HTTPs site described earlier on where only the client was validating the server.

Additional Comments

Some additional observations I’ve made from this exercise

  • If enforcing strict mTLS on a service that’s exposed externally from a load balancer, your clients will obviously need to send x509 certificates that can be validated by Citadel. A more flexible alternative to this is to employ an Istio gateway that provides TLS termination at the cluster boundary. This negates the need to provision x509 certs to each and every client, whilst maintaining mTLS within the cluster.
  • Envoy sidecar pods can affect liveness probes and might require you to implement
     sidecarInjectorWebhook.rewriteAppHTTPProbe=true 

    upon installing Helm 

« Older posts Newer posts »

© 2024 Virtual Thoughts

Theme by Anders NorenUp ↑

Social media & sharing icons powered by UltimatelySocial
RSS
Twitter
Visit Us
Follow Me